

The New Milestone of Confocal Microscopy

- New full range confocal platform -







Drosophila melanogaster, eye section Red: F-Actin, Cy3 Blue: Nuclei, DAPI Green: pigmented cells, GFP Courtesy of Anne Galy, IGBMC, Strasbourg-Illkirch, France

#### Confocal Image -- Fluorescence

Confocal Microscopes can optically remove all information that is from outside the depth of focus.



#### **Optical Section**

The consequence is a sharp optical section.













| Objective                  | Immersion | coverglass |
|----------------------------|-----------|------------|
| HC PL APO 10x/0.4 CS       | Air       | 0.17mm     |
| HC PL APO 20x/0.7          | Air       | 0.17mm     |
| HC PL APO 40x/1.30 Oil CS2 | Oil       | 0.17mm     |
| HC PL APO 63x/1.40 Oil CS2 | Oil       | 0.17mm     |
| HC PL APO 100x/1.4 Oil CS2 | Oil       | 0.17mm     |





- CS: Confocal Scan, the highest quality objectives
- New set of objective lenses for UV/VIS
- Optimized for multi-color overlay between 405 nm and VIS lasers
- Excellent planarity of field











#### Leica TCS SP8

Looking forward to your discoveries

- Sensitivity by Design
- Faster for new Biology
- New technology for image
- Ready to grow



## Leica TCS SP8 Sensitivity by design



## New scan optics

- New coatings for improved transmission
- Dedicated scan optics maximizing photon efficiency

   optimal transmission for each application
- Arranged in "4f" design for even field illumination
- "My Confocal" dedicated intermediate optics





#### **New scan optics** Coatings of scan optics compared 100% T[%] T[%] after passage of 8 per opt. 96% surface opt. surfaces 92% $(96\%)^8 = 72\%$ 96% No coating 88% **Transmissio** $(99.3\%)^8 = 95\%$ 99.3% (400-1300nm) 84% 80% 76% Reduced reflection by 60%72% VISIR HIVIS No coating Transmission after passage of 8 optical surfaces 72% 95% 98%





- Highly transparent → Increase sample lifetime, cell viability → more and better experiments
- Flexible → links in with WLL, Ar laser
   → more diverse experiments
- Ease of use → Save training time; better turnover (low failure rate)
- **Supports new dyes** → Future-proof
- Cool technology  $\rightarrow$  Prestige



#### **AOBS Principle**







#### **Confocal microscopy: sophisticated**

Leica Innovation Goals: Introduction of tuneable optical elements



#### Leading in Multispectral Imaging: Spectral Imaging Detector SP





- All dyes: Freely tuneable emission bands
- Low sample photodamage: high efficiency
- Up to 5 true confocal channels simultaneously
- Intuitive operation



#### **Spectral scans**

No distortions in spectra caused by filter or splitter transmission spectra





- Laser Kit White light laser
- 470-670nm
- WLL now supports
  - Lambda<sup>2</sup>Excitation-Emission scans
  - Lightgate (reflection removal)
- Add optional UV lasers
- LightGate: Non-optical reflection removal
- Pulsepicker option for improved FLIM
- Lifetime Saver











#### 共軛焦顯微鏡中白光雷射的應用

✓ 只有搭配在AOBS系統上,才能真正稱之為白光雷射系統。







#### Leica HyD



#### **Reduced light dosage: Increased cell viability**



#### Improved Signal-to-Noise



## Improved contrast of HyD vs. PMT





# **Faster for new biology**



#### **Single Point Scan Scanner**





- Better sampling at low magnification
  - Large FOV
  - $\circ$  Field number = 22
  - New Zoom range 0.75x .. 48x
- Save time on post-processing (mosaics)
- Homogenous illumination -> better data
- Now with 3600 Hz scan frequency (bidir)
- Equiv. to 7 fps @ 512 x 512







# New technology for image

 $\langle \lambda 2 \rangle$  -Mapping





## $\lambda^2$ –Mapping: Discover hidden information





#### Benefits of $\lambda^2$ -Maps

- Full spectral analysis of images
- Understand samples with very complex fluorescence
- Depict multifaceted features at one look
- Complete spectrum in each pixel
- Extract excitation and emission spectra



#### ADVANCED / USER CASE / APPLICATIONS

APPLICATION: FIND THE BEST FLUORESCENT LABEL

#### λ<sup>2</sup>–Mapping: **Find the best fluorescent label!**



Overview image



 $\lambda^2$  plots: Excitation: 470 to 670 nm, Detection: 500 to 750 nm



Strong autofluorescence of primary mouse hepatocytes

Sample: Courtesy of René Meyer, Klingmüller Group, Systems Biology of Signal Transduction, DKFZ, Heidelberg, Germany



ADVANCED / USER CASE / APPLICATIONS

APPLICATION: OPTIMIZATION OF DATA QUALITY

# $\lambda^2-Mapping:$ Experiment optimization for best data quality





Sample: Mixture of fixed cells expressing four different fluorescent proteins. Excitation emission peaks are given in brackets. All cells show a small autofluorescence peak at (512, 533) nm.

Courtesy of Kees Jalink, Department of Cell biology, The Netherlands Cancer Institute Amsterdam, The Netherlands





45678 ON



80 MHz



<u>Sample:</u> Mixture of fixed cells expressing four different fluorescent proteins. XI Port: Mirror Wirror Action Standard Construction Standard Const

Courtesy of Kees Jalink, Department of Cell biology, The Netherlands Cancer Institute Amsterdam, The Netherlands



Major Instruments Co., Ltd.

## New technology for image

Light Gate imaging



- The WLL is a pulsed laser
- Use time information to
  - $\Rightarrow$  separate fluorescence decay from reflection
  - ⇒ discriminate between wanted and non-wanted fluorescence

#### Fluorescence lifetime Average time that molecules stay in their excited state



#### TCS SP8X LightGate Filter free removal of non-wanted background



- Detector data reading is switched off during WLL pulse.
   ⇒ Only fluorescence signal is used for image formation, reflected light is excluded.
- LightGate is adjustable to different fluorescence decay times.
   ⇒ Removal of non-wanted fluorescence is light possible.



# Removal of reflected and scattered light by LightGate



Sequential scan with and without LightGate. Detection directly at excitation wavelength.



# Removal of reflected and scattered light by LightGate



Excitation: 470 nm Excitation: 510 nm Detection: 465-590nmDetection: 495-540 nm C

Overlay



Sample: fixed HeLa cells, tubulin stained with BD Horizon V-500, nucleus stained with Chromeo 505, xy scan







# New Software LAS X





Multidimensional Confocal Imaging ху



Drosophila leg, FITC, non-confocal

confocal

# ху













# xyzt







Fish embryo (Medaka) Flow of red blood cells and migration of macrophages. Macrophage: VFP and RFP (1st & 2nd ch) Red blood cells: TLD

Courtesy of Clemens Grabher and Jochen Wittbrodt (EMBL), Heidelberg, Germany

#### Multidimensional Confocal Imaging

xyzt



Drosophila mitosis pre-cellularized embryo GFP-tagged histone,

400 frames, 20 sec between each stack, each frame presents a stereo image

Courtesy: Prof. Sullivan (University of California, Santa Cruz); Robert Saint (Adelaide, Australia)

# xyzt







共軛焦顯微鏡的發展趨勢:

Confocal system is not only for confocal images, but a platform for new application development...





